初中數(shù)學(xué)定理匯總1.過(guò)兩點(diǎn)有且只有一條直線2.兩點(diǎn)之間線段最短3.同角或等角的補(bǔ)角相等4.同角或等角的余角相等5.過(guò)一點(diǎn)有且只有一條直線和已知直線垂直6.直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7.平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行9.同位角相等,兩直線平行10.內(nèi)錯(cuò)角相等,兩直線平行11.同旁?xún)?nèi)角互補(bǔ),兩直線平行12.兩直線平行,同位角相等13.兩直線平行,內(nèi)錯(cuò)角相等14.兩直線平行,同旁?xún)?nèi)角互補(bǔ)15.定理三角形兩邊的和大于第三邊16.推論三角形兩邊的差小于第三邊17.三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°18.推論1直角三角形的兩個(gè)銳角互余19.推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20.推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21.全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等22.邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等23.角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等24.推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等25.邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等26.斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等27.定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等28.定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29.角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合30.等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)31.推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32.等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33.推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°34.等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)35.推論1三個(gè)角都相等的三角形是等邊三角形36.推論2有一個(gè)角等于60°的等腰三角形是等邊三角形37.在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半38.直角三角形斜邊上的中線等于斜邊上的一半39.定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等40.逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41.線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42.定理1關(guān)于某條直線對(duì)稱(chēng)的兩個(gè)圖形是全等形43.定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線44.定理3兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱(chēng)軸上4
45.逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱(chēng)46.勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c247.勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形48.定理四邊形的內(nèi)角和等于360°49.四邊形的外角和等于360°50.多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51.推論任意多邊的外角和等于360°52.平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等53.平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等54.推論夾在兩條平行線間的平行線段相等55.平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分56.平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形57.平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形58.平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形59.平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形60.矩形性質(zhì)定理1矩形的四個(gè)角都是直角61.矩形性質(zhì)定理2矩形的對(duì)角線相等62.矩形判定定理1有三個(gè)角是直角的四邊形是矩形63.矩形判定定理2對(duì)角線相等的平行四邊形是矩形64.菱形性質(zhì)定理1菱形的四條邊都相等65.菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角66.菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷267.菱形判定定理1四邊都相等的四邊形是菱形68.菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形69.正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等70.正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角71.定理1關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等的72.定理2關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分73.逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(chēng)74.等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75.等腰梯形的兩條對(duì)角線相等76.等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77.對(duì)角線相等的梯形是等腰梯形78.平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79.推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰80.推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81.三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82.梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83.(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84.(2)合比性質(zhì):4
如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例87.推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例88.定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊89.平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例90.定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似91.相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)92.直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93.判定定理2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)94.判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)95.定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似96.性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比97.性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比98.性質(zhì)定理3相似三角形面積的比等于相似比的平方99.任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100.任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合102.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104.同圓或等圓的半徑相等105.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓106.和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107.到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線108.到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109.定理不在同一直線上的三點(diǎn)確定一個(gè)圓。110.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧111.推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條?、谙业拇怪逼椒志€經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧112.推論2圓的兩條平行弦所夾的弧相等113.圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形114.定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等115.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等116.定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半117.推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等118.推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑119.推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120.定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角4
121.①直線L和⊙O相交d﹤r②直線L和⊙O相切d=r③直線L和⊙O相離d﹥r(jià)122.切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線123.切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑124.推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)125.推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心126.切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角127.圓的外切四邊形的兩組對(duì)邊的和相等128.弦切角定理弦切角等于它所夾的弧對(duì)的圓周角129.推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130.相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等131.推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)132.切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)133.推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等134.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135.①兩圓外離d﹥R+r②兩圓外切d=R+r③兩圓相交R-r﹤d﹤R+r(R﹥r(jià))④兩圓內(nèi)切d=R-r(R﹥r(jià))⑤兩圓內(nèi)含d﹤R-r(R﹥r(jià))136.定理相交兩圓的連心線垂直平分兩圓的公共弦137.定理把圓分成n(n≥3):⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n140.定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141.正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)142.正三角形面積√3a/4a表示邊長(zhǎng)143.如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144.弧長(zhǎng)計(jì)算公式:L=n兀R/180145.扇形面積公式:S扇形=n兀R^2/360=LR/2146.內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)4