§8.1 空間幾何體的結(jié)構(gòu)特征、表面積與體積應(yīng)用篇【應(yīng)用集訓(xùn)】1.(多選題)(2020山東濰坊一模,10)沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開(kāi)始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過(guò)連接管道全部流到下部容器所需要的時(shí)間稱(chēng)為該沙漏的一個(gè)沙時(shí).如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的(細(xì)管長(zhǎng)度忽略不計(jì)).假設(shè)該沙漏每秒鐘漏下0.02cm3的沙,且細(xì)沙全部漏入下部后,恰好堆成一個(gè)蓋住沙漏底部的圓錐形沙堆.以下結(jié)論正確的是( )A.沙漏中的細(xì)沙的體積為cm3B.沙漏的體積是128πcm3C.細(xì)沙全部漏入下部后圓錐形沙堆的高度約為2.4cmD.該沙漏的一個(gè)沙時(shí)大約是1985秒(π≈3.14)答案 ACD2.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有委米依垣內(nèi)角,下周八尺,高五尺.問(wèn):積及為米幾何?”其意思為:“在屋內(nèi)墻角處堆放米(如圖,米堆為一個(gè)圓錐的四分之一),米堆底部的弧長(zhǎng)為8尺,米堆的高為5尺,問(wèn)米堆的體積和堆放的米各為多少?”已知1斛米的體積約為1.62立方尺,圓周率約為3,估算出堆放的米約有( )A.14斛 B.22斛 C.36斛 D.66斛答案 B3.如圖,有一個(gè)水平放置的透明無(wú)蓋的正方體容器,容器高8cm,將一個(gè)球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時(shí)測(cè)得水深為6cm,如果不計(jì)容器的厚度,則球的體積為( )A.cm3 B.cm3C.cm3 D.cm3
答案 A4.(2019課標(biāo)Ⅲ,16,5分)學(xué)生到工廠(chǎng)勞動(dòng)實(shí)踐,利用3D打印技術(shù)制作模型.如圖,該模型為長(zhǎng)方體ABCD-A1B1C1D1挖去四棱錐O-EFGH后所得的幾何體,其中O為長(zhǎng)方體的中心,E,F,G,H分別為所在棱的中點(diǎn),AB=BC=6cm,AA1=4cm.3D打印所用原料密度為0.9g/cm3.不考慮打印損耗,制作該模型所需原料的質(zhì)量為 g.?答案 118.85.(2017課標(biāo)Ⅰ,16,5分)如圖,圓形紙片的圓心為O,半徑為5cm,該紙片上的等邊三角形ABC的中心為O.D,E,F為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線(xiàn)剪開(kāi)后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱錐.當(dāng)△ABC的邊長(zhǎng)變化時(shí),所得三棱錐體積(單位:cm3)的最大值為 .?答案 4