2008年四川省成都市中考數(shù)學(xué)試卷
ID:49168 2021-10-08 1 6.00元 14頁 310.58 KB
已閱讀10 頁,剩余4頁需下載查看
下載需要6.00元
免費(fèi)下載這份資料?立即下載
2008年四川省成都市中考數(shù)學(xué)試卷一、選擇題(共10小題,每小題3分,滿分30分))1.cos的值等于()A.B.C.D.2.化簡(jiǎn)???的結(jié)果是()A.?B.??C.D.3.北京奧運(yùn)會(huì)火炬?zhèn)鬟f以“和諧之旅”為主題,以“點(diǎn)燃激情傳遞夢(mèng)想”為口號(hào)進(jìn)行,其傳遞總路程約為??????千米,這個(gè)路程用科學(xué)記數(shù)法表示為()A.????千米B.????千米C.????千米D.????千米4.用若干個(gè)大小相同,棱長(zhǎng)為的小正方體搭成一個(gè)幾何體模型,其三視圖如圖所示,則搭成這個(gè)幾何體模型所用的小正方體的個(gè)數(shù)是()A.B.C.D.?5.下列事件是必然事件的是()A.打開電視機(jī),任選一個(gè)頻道,屏幕上正在播放天氣預(yù)報(bào)B.到電影院任意買一張電影票,座位號(hào)是奇數(shù)C.在地球上,拋出去的籃球會(huì)下落D.擲一枚均勻的骰子,骰子停止轉(zhuǎn)動(dòng)后偶數(shù)點(diǎn)朝上6.在函數(shù)??中,自變量的取值范圍是()A.??B.??C.?D.?7.如圖,在香?與香?中,已有條件香香,還需添加兩個(gè)條件才能使香?香?,不能添加的一組條件是()A.香香,香?香?B.香?香?,??C.,香香D.,香?香?8.附加題:一交通管理人員星期天在市中心的某十字路口,對(duì)闖紅燈的人次進(jìn)行統(tǒng)計(jì),根據(jù)上午?:??:??中各時(shí)間段(以小時(shí)為一個(gè)時(shí)間段)闖紅燈的人次,制作了如圖所示的條形統(tǒng)計(jì)圖,則各時(shí)間段闖紅燈人次的眾數(shù)和中位數(shù)分別為()試卷第1頁,總14頁 A.,B.?,C.,?D.?,?9.如圖,小紅同學(xué)要用紙板制作一個(gè)高??,底面周長(zhǎng)是??的圓錐形漏斗模型,若不計(jì)接縫和損耗,則她所需紙板的面積是()A.??B.??C.??D.??10.有下列函數(shù):①??;②?;③??;④.其中當(dāng)在各自的自變量取值范圍內(nèi)取值時(shí),隨著的增大而增大的函數(shù)有()A.①②B.①④C.②③D.③④二、填空題(共9小題,每小題4分,滿分36分))11.現(xiàn)有甲、乙兩支排球隊(duì),每支球隊(duì)隊(duì)員身高的平均數(shù)均為?米,方差分別為???,??,則身高較整齊的球隊(duì)是________隊(duì).甲乙12.已知是關(guān)于的一元二次方程???的一個(gè)根,則實(shí)數(shù)?的值是________.13.如圖,已知是的切線,切點(diǎn)為,?,??,那么________.14.如圖,在平面直角坐標(biāo)系中,??是香?經(jīng)過某種變換后得到的圖形,觀察點(diǎn)與點(diǎn),點(diǎn)香與點(diǎn)?,點(diǎn)?與點(diǎn)?的坐標(biāo)之間的關(guān)系.在這種變換下,如果香?中任意一點(diǎn)的坐標(biāo)為標(biāo),那么它們的對(duì)應(yīng)點(diǎn)的坐標(biāo)是試卷第2頁,總14頁 ________.15.已知?,那么???的值是________.??16.某農(nóng)場(chǎng)租用播種機(jī)播種小麥,在甲播種機(jī)播種天后,又調(diào)來乙播種機(jī)參與播種,直至完成??畝的播種任務(wù),播種畝數(shù)與天數(shù)之間的函數(shù)關(guān)系如圖所示,那么乙播種機(jī)參與播種的天數(shù)是________天.17.?.如圖,已知點(diǎn)是銳角內(nèi)的一點(diǎn),試分別在、上確定點(diǎn)香、點(diǎn)?,使香?的周長(zhǎng)最小.寫出你作圖的主要步驟并標(biāo)明你所確定的點(diǎn)(要求畫出草圖,保留作圖痕跡)18.如果?是從?,,,?四個(gè)數(shù)中任取的一個(gè)數(shù),是從?,,三個(gè)數(shù)中任取的一個(gè)數(shù),那么關(guān)于的一元二次方程??=?有實(shí)數(shù)根的概率為________.19.如圖,已知________、________、________是________上的三個(gè)點(diǎn),且________=________,________=??________,________=?度.如果________是線段________上的點(diǎn),且點(diǎn)________到直線________的距離為________,那么________=________.試卷第3頁,總14頁 三、解答題(共9小題,滿分84分))20.解答下列各題:??(1)計(jì)算:???????.?(2)化簡(jiǎn):??????21.解不等式組?,并寫出該不等式組的最大整數(shù)解.?22.如圖,某中學(xué)九年級(jí)一班數(shù)學(xué)課外活動(dòng)小組利用周末開展課外實(shí)踐活動(dòng),他們要在某公園人工湖旁的小山香上,測(cè)量湖中兩個(gè)小島?,間的距離.從山頂處測(cè)得湖中小島?的俯角為?,測(cè)得湖中小島的俯角為度.已知小山香的高為?米,求小島?,間的距離.(計(jì)算過程和結(jié)果均不取近似值)?23.如圖,已知反比例函數(shù)的圖象經(jīng)過點(diǎn)標(biāo)??,一次函數(shù)?耀的圖象經(jīng)過點(diǎn)與點(diǎn)??標(biāo)?,且與反比例函數(shù)的圖象相交于另一點(diǎn)香.(1)試確定這兩個(gè)函數(shù)的表達(dá)式;(2)求點(diǎn)香的坐標(biāo).24.一不透明紙箱中裝有形狀,大小,質(zhì)地等完全相同的個(gè)小球,分別標(biāo)有數(shù)字,,?,.(1)從紙箱中隨機(jī)地一次取出兩個(gè)小球,求這兩個(gè)小球上所標(biāo)的數(shù)字一個(gè)是奇數(shù)另一個(gè)是偶數(shù)的概率;(2)先從紙箱中隨機(jī)地取出一個(gè)小球,用小球上所標(biāo)的數(shù)字作為十位上的數(shù)字;將取出的小球放回后,再隨機(jī)地取出一個(gè)小球,用小球上所標(biāo)的數(shù)字作為個(gè)位上的數(shù)字,則組成的兩位數(shù)恰好能被?整除的概率是多少?試用樹狀圖或列表法加以說明.試卷第4頁,總14頁 25.已知:在梯形香?中,香?,香?,香,?分別是香和香?邊上的點(diǎn).(1)如圖①,以香?為對(duì)稱軸翻折梯形香?,使點(diǎn)香與點(diǎn)重合,且?香?.若,香?,求梯形香?的面積的值;梯形香?(2)如圖②,連接香?并延長(zhǎng)與?的延長(zhǎng)線交于點(diǎn),如果??香?(?為正數(shù)),試猜想香香與?有何數(shù)量關(guān)系寫出你的結(jié)論并證明之.26.金泉街道改建工程指揮部,要對(duì)某路段工程進(jìn)行招標(biāo),接到了甲、乙兩個(gè)工程隊(duì)的投標(biāo)書.從投標(biāo)書中得知:甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的;若由甲隊(duì)先做?天,剩下的工程再由甲、乙兩隊(duì)合作??天可以完成.?(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需要多少天?(2)已知甲隊(duì)每天的施工費(fèi)用為??萬元,乙隊(duì)每天的施工費(fèi)用為??萬元,工程預(yù)算的施工費(fèi)用為?萬元.為縮短工期以減少對(duì)住戶的影響,擬安排甲、乙兩隊(duì)合作完成這項(xiàng)工程,則工程預(yù)算的施工費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬元?請(qǐng)給出你的判斷并說明理由.27.如圖,已知的半徑為,以的弦香為直徑作,點(diǎn)?是優(yōu)弧香上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、點(diǎn)香重合).連接?、香?,分別與相交于點(diǎn)、點(diǎn)香,連接香.若香=?.(1)求?的度數(shù);(2)求香的長(zhǎng);(3)如果記tan香?=,??,那么在點(diǎn)?的運(yùn)動(dòng)過程中,試用含?的代數(shù)式表示.28.如圖,在平面直角坐標(biāo)系中,香的頂點(diǎn)的坐標(biāo)為?標(biāo)?,頂點(diǎn)香在第試卷第5頁,總14頁 一象限內(nèi),且?香??,sin香.(1)若點(diǎn)?是點(diǎn)香關(guān)于軸的對(duì)稱點(diǎn),求經(jīng)過、?、三點(diǎn)的拋物線的函數(shù)表達(dá)式;(2)在(1)中,拋物線上是否存在一點(diǎn),使以、、?、為頂點(diǎn)的四邊形為梯形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;(3)若將點(diǎn)、點(diǎn)分別變換為點(diǎn)???標(biāo)?、點(diǎn)??標(biāo)?(??的常數(shù)),設(shè)過?、?兩點(diǎn),且以??的垂直平分線為對(duì)稱軸的拋物線與軸的交點(diǎn)為,其頂點(diǎn)為,記?的面積為?,??的面積??,求?:??的值.試卷第6頁,總14頁 參考答案與試題解析2008年四川省成都市中考數(shù)學(xué)試卷一、選擇題(共10小題,每小題3分,滿分30分)1.B2.A3.D4.B5.C6.C7.D8.A9.B10.C二、填空題(共9小題,每小題4分,滿分36分)11.乙12.?13.?14.?標(biāo)?15.16.17.解:作點(diǎn)關(guān)于的對(duì)稱點(diǎn),關(guān)于的對(duì)稱點(diǎn)″,連接″,交,于點(diǎn)香,?,所以三角形周長(zhǎng)最小.?18.?19.,香,?,,香,??,?,??,香?,,香?,,?,??,香,??三、解答題(共9小題,滿分84分)??20.(1)解:??????????(2)解:???試卷第7頁,總14頁 ?????.21.解:解不等式??,得???解不等式,得?∴不等式得解集為?∴該不等式組的最大整數(shù)解是.22.小島?,之間得距離為????米.?23.解:(1)∵反比例函數(shù)的圖象經(jīng)過點(diǎn)標(biāo)??,?∴??,即???,?∴反比例函數(shù)的表達(dá)式為?,∵一次函數(shù)?耀的圖象經(jīng)過點(diǎn)標(biāo)??,??標(biāo)?,?耀???∴,解得,耀?耀?∴一次函數(shù)的表達(dá)式為?;??(2)由,消去,得???,即????,??∴或?,可得??或?,于是,或,???∵點(diǎn)的坐標(biāo)是標(biāo)??,∴點(diǎn)香的坐標(biāo)為?標(biāo)?.24.從紙箱中隨機(jī)地一次取出兩個(gè)小球,所標(biāo)數(shù)字的所有可能結(jié)果有:標(biāo),標(biāo)?,標(biāo),標(biāo)?,標(biāo),?標(biāo),共種;而所標(biāo)數(shù)字一個(gè)是奇數(shù)另一個(gè)是偶數(shù)的有種,∴;?畫樹狀圖:或用列表法:第二次?第一次(11)(12)(13)(14)(21)(22)(23)(24)?(31)(32)(33)(34)試卷第8頁,總14頁 (41)(42)(43)(44)所有可能出現(xiàn)的結(jié)果共有種,其中能被?整除的有種.∴.25.解:(1)由題意,有香香?香?.∴香??如圖,過點(diǎn)作香?于點(diǎn).則四邊形?是矩形.∴?,?.在?香和???中,∵香?,?,∴?香???.㈠名∴香??∴香香????.∴?香?香?∴香???梯形香?(2)猜想:??香香(或香香?)證明:如圖,過點(diǎn)香作香㈠?,交香?于點(diǎn)㈠.則?香㈠??.又香?㈠??,∴香?㈠??.香?香㈠∴,???而??香?,即?.香?香㈠∴即??香㈠??∵香㈠?,∴香㈠香?香.而四邊形香?是等腰梯形,∴香?香.∴香香㈠香.∴香香香㈠.∴??香香.試卷第9頁,總14頁 26.設(shè)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要天,則甲隊(duì)單獨(dú)完成這項(xiàng)工程需要天.??根據(jù)題意得:??=.??解得:=?.經(jīng)檢驗(yàn):=?是原方程的根.∴?=?.??答:甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需要?天和?天.設(shè)甲、乙兩隊(duì)合作完成這項(xiàng)工程需要天.可得:=.??解得:=?.需要施工費(fèi)用:?????=??.∵????∴工程預(yù)算的施工費(fèi)用不夠用,需追加預(yù)算??萬元.27.如圖:連接香、.則在?香中,∵香=,香?,∴=.∵香,∴香=??.∴香=?.連接.則香=?.∴?香=?.∵四邊形香香內(nèi)接于,∴?香香=?,∵?香香=?,∴?香=?香,在?香和?香中,∵?香=?香,香?=?香,香?∴?香?香,∴.香香?連接香,則香?=香=?.在?香?中,∵香?=?,∴?香=??.∴香?=?.?香∴.即.香?香∴香香??.連接香.∵香是的直徑,∴香香=香?=?.由,可得=?,?=?=?.??香香在??香中,∵cos?香,sin?香,??∴?香=?cos?香=?cos??;試卷第10頁,總14頁 ?香=?sin?香=?sin??.又由(2),知香?=?.∴香香=香???香??????.?香??在?香香中,tan香?,香香??????∴??.??28.解:(1)如圖,過點(diǎn)香作香于點(diǎn).在?香中,∵?香??,sin香,∴?香??香?sin香??.又由勾股定理,得???香???香????∴?????????.∵點(diǎn)香在第一象限,∴點(diǎn)香的坐標(biāo)為標(biāo)?.…?分設(shè)經(jīng)過?標(biāo)?、?標(biāo)??、?標(biāo)?三點(diǎn)的拋物線的函數(shù)表達(dá)式為式耀式試卷第11頁,總14頁 ?.式式耀??由??式?耀?耀?∴經(jīng)過、?、三點(diǎn)的拋物線的函數(shù)表達(dá)式為?.…分(2)假設(shè)在(1)中的拋物線上存在點(diǎn),使以、、?、為頂點(diǎn)的四邊形為梯形①∵點(diǎn)?標(biāo)??不是拋物線?的頂點(diǎn),∴過點(diǎn)?作直線的平行線與拋物線交于點(diǎn).則直線?的函數(shù)表達(dá)式為??.對(duì)于?,令??則得或.∴????而點(diǎn)?標(biāo)??,∴標(biāo)??.在四邊形?中,?,顯然?????.∴點(diǎn)標(biāo)??是符合要求的點(diǎn).…分②若?.設(shè)直線?的函數(shù)表達(dá)式為?.將點(diǎn)?標(biāo)??代入,得????∴???∴直線?的函數(shù)表達(dá)式為?.?于是可設(shè)直線的函數(shù)表達(dá)式為?耀.?將點(diǎn)?標(biāo)?代入,得?.?∴直線的函數(shù)表達(dá)式為?.??由????,?試卷第12頁,總14頁 即???.??∴而點(diǎn)?標(biāo)?,?∴?標(biāo).過點(diǎn)作香軸于點(diǎn)香,則?香?.在?香中,由勾股定理,得???香??香??.而????香?.∴在四邊形?中,?,但?????.∴點(diǎn)?標(biāo)是符合要求的點(diǎn).…分③若??,設(shè)直線?的函數(shù)表達(dá)式為?耀將點(diǎn)?標(biāo)?、?標(biāo)??代入,??耀?得?耀??∴直線?的函數(shù)表達(dá)式為?.∴直線?的函數(shù)表達(dá)式為,由??,?即??.?∴??而點(diǎn)?標(biāo)?,∴?標(biāo)?.過點(diǎn)?作?香軸于點(diǎn)香,則??香??.在??香中,由勾股定理,得????????????.而????香??.∴在四邊形??中,??,但??????.∴點(diǎn)?標(biāo)?是符合要求的點(diǎn).…分綜上可知,在(1)中的拋物線上存在點(diǎn)標(biāo)??、?標(biāo)、?標(biāo)?,使以、、?、為頂點(diǎn)的四邊形為梯形.…分(3)由題知,拋物線的開口可能向上,也可能向下.①當(dāng)拋物線開口向上時(shí),則此拋物線與軸的負(fù)半軸交于點(diǎn).可設(shè)拋物線的函數(shù)表達(dá)式為式???式??.?即式??式???式?式???式?.如圖,過點(diǎn)作軸于點(diǎn).??∵???標(biāo)?、??標(biāo)?、(?標(biāo)?、?標(biāo)??式?、?,?式?,??∴????,??????,???,????,???式?,??式?.∴????????????式??式?.??????????????????????式??式?式????式?試卷第13頁,總14頁 ?????式?,??∴?:??式?:?式??:?.…分②當(dāng)拋物線開口向下時(shí),則此拋物線與軸的正半軸交于點(diǎn),同理,可得?:???:?.…分綜上所知,?:??的值為?:?.…分試卷第14頁,總14頁
同類資料
更多
2008年四川省成都市中考數(shù)學(xué)試卷