2011年安徽省蕪湖市中考數(shù)學(xué)試卷一、選擇題(共10小題,每小題4分,滿分40分))1..的相反數(shù)是()A..B.C.D....2.我們身處在自然環(huán)境中,一年接受的宇宙射線及其它天然輻射照射量約為??微西弗(西弗等于???毫西弗,毫西弗等于???微西弗),用科學(xué)記數(shù)法可表示為()A.香?西弗B.香?西弗C.香?西弗D.香?西弗3.如圖所示,下列幾何體中主視圖、左視圖、俯視圖都相同的是()A.B.C.D.4.函數(shù)h中,自變量h的取值范圍是()A.hB.hC.hD.hh程5.分式方程的解是()hhA.h=B.h=C.h=D.h=或h=6.如圖,已知??中,??程,是高和?的交點(diǎn),?,則線段的長(zhǎng)度為()A.B.C.D.7.已知直線?h經(jīng)過點(diǎn)?點(diǎn)和點(diǎn)?,則?的值為()A.B.C.D.8.如圖,直徑為?的經(jīng)過點(diǎn)??點(diǎn)程和點(diǎn)?點(diǎn)?,?是軸右側(cè)優(yōu)弧上一點(diǎn),則??的余弦值為()試卷第1頁(yè),總10頁(yè)
程A.B.C.D.9.如圖,從邊長(zhǎng)為??的正方形紙片中剪去一個(gè)邊長(zhǎng)為??的正方形??,剩余部分沿虛線又剪拼成一個(gè)矩形(不重疊無(wú)縫隙),則矩形的面積為()A.?程??B.?程?C.??D.?程??10.二次函數(shù)?hh?的圖象如圖所示,則反比例函數(shù)與一次函數(shù)hh?在同一坐標(biāo)系中的大致圖象是()A.B.C.D.二、填空題(共6小題,每小題5分,滿分30分))11.一個(gè)角的補(bǔ)角是程,這個(gè)角是________.12.分解因式:hhh=________.h13.方程組的解是________.h.14.已知?,為兩個(gè)連續(xù)的整數(shù),且?.,則?________.?15.如圖,在平面直角坐標(biāo)系中有一正方形??,反比例函數(shù)經(jīng)過正方形h??對(duì)角線的交點(diǎn),半徑為的圓內(nèi)切于??,則?的值為________.試卷第2頁(yè),總10頁(yè)
16.如圖,在正方形??內(nèi)有一折線段,其中丄,丄?,并且,.,??,則正方形與其外接圓之間形成的陰影部分的面積為________.三、解答題(共8小題,滿分80分))?cos.程?香.sin?香;17.17.(1)計(jì)算h程(2)求滿足不等式組的整數(shù)解.程h.18.如圖,某校數(shù)學(xué)興趣小組的同學(xué)欲測(cè)量陸羽故園內(nèi)一座垂直于地面的寶塔?的高度,他們先在處測(cè)得寶塔頂端點(diǎn)的仰角為程,再沿著?的方向后退?至?處,測(cè)得寶塔頂端點(diǎn)的仰角為?.求該寶塔?的高度(香,香,結(jié)果保留一位小數(shù)).19.某中學(xué)開展“唱紅歌”比賽活動(dòng),九年級(jí)、班根據(jù)初賽成績(jī),各選出程名選手參加復(fù)賽,兩個(gè)班各選出的程名選手的復(fù)賽成績(jī)(滿分為??分)如圖所示.根據(jù)圖示填寫下表;試卷第3頁(yè),總10頁(yè)
班級(jí)平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)九.程.程九.?結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好;計(jì)算兩班復(fù)賽成績(jī)的方差.(方差公式:hhhhhh).20.如圖,用兩段等長(zhǎng)的鐵絲恰好可以分別圍成一個(gè)正五邊形和一個(gè)正六邊形,其中正五邊形的邊長(zhǎng)為h?,正六邊形的邊長(zhǎng)為hh?(其中h?).求這兩段鐵絲的總長(zhǎng).21.如圖,在梯形??中,??,??,?平分??,?.過點(diǎn)作?,過點(diǎn)?作??,垂足分別為、,連接,求證:為等邊三角形.22.在復(fù)習(xí)《反比例函數(shù)》一課時(shí),同桌的小明和小芳有一個(gè)問題觀點(diǎn)不一致.小明認(rèn)為如果兩次分別從六個(gè)整數(shù)中任取一個(gè)數(shù),第一個(gè)數(shù)作為點(diǎn)點(diǎn)的橫坐標(biāo),第二個(gè)數(shù)作為點(diǎn)點(diǎn)的縱坐標(biāo),則點(diǎn)點(diǎn)在反比例函數(shù)的圖象上的概率h一定大于在反比例函數(shù)的圖象上的概率,而小芳卻認(rèn)為兩者的概率相同.你贊成h誰(shuí)的觀點(diǎn)?(1)試用列表或畫樹狀圖的方法列舉出所有點(diǎn)點(diǎn)的情形;(2)分別求出點(diǎn)點(diǎn)在兩個(gè)反比例函數(shù)的圖象上的概率,并說(shuō)明誰(shuí)的觀點(diǎn)正確.23.如圖,已知直線交于、?兩點(diǎn),是的直徑,點(diǎn)?為上一點(diǎn),且?平分,過?作?,垂足為.(1)求證:?為的切線;試卷第4頁(yè),總10頁(yè)
(2)若?=,的直徑為?,求?的長(zhǎng)度.24.平面直角坐標(biāo)系中,??如圖放置,點(diǎn)、?的坐標(biāo)分別為?點(diǎn)、點(diǎn)?,將此平行四邊形繞點(diǎn)順時(shí)針旋轉(zhuǎn)?,得到??.(1)若拋物線過點(diǎn)?,,,求此拋物線的解析式;(2)??和??重疊部分?的周長(zhǎng);(3)點(diǎn)是第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問:點(diǎn)在何處時(shí)的面積最大?最大面積是多少?并求出此時(shí)的坐標(biāo).試卷第5頁(yè),總10頁(yè)
參考答案與試題解析2011年安徽省蕪湖市中考數(shù)學(xué)試卷一、選擇題(共10小題,每小題4分,滿分40分)1.D2.C3.C4.A5.C6.B7.B8.C9.D10.D二、填空題(共6小題,每小題5分,滿分30分)11.程程12.hhh程13.14.15.16..??三、解答題(共8小題,滿分80分)17.、、程、.18.解:根據(jù)題意可知:?程,???,??,在?中,由??程,得??,??在??中,由tan??得,???,??tan?又∵????,∴???,?∴??香,該寶塔?的高度為香.19.解:由圖可知九班程名選手的復(fù)賽成績(jī)?yōu)椋撼厅c(diǎn).?點(diǎn).程點(diǎn).程點(diǎn)??,九班程名選手的復(fù)賽成績(jī)?yōu)??點(diǎn)??點(diǎn)??點(diǎn)程點(diǎn).?,九的平均數(shù)為程.?.程.程??程.程,九的中位數(shù)為.程,九的眾數(shù)為.程,把九的成績(jī)按從小到大的順序排列為:?點(diǎn)程點(diǎn).?點(diǎn)??點(diǎn)??,九班的中位數(shù)是.?,九班的眾數(shù)是??,九班的平均數(shù)為?程.?????程.程.試卷第6頁(yè),總10頁(yè)
班平中眾級(jí)均位數(shù)數(shù)數(shù)(((分分分)))九.程.程.程九.程.???九班成績(jī)好些,因?yàn)閮蓚€(gè)班級(jí)的平均數(shù)相同,九班的中位數(shù)高,所以在平均數(shù)相同的情況下中位數(shù)高的九班成績(jī)好些;程.程.?.程程.程.程??.程?,?.程??.程程??.程程.程.?.程?.20.這兩段鐵絲的總長(zhǎng)為??.21.證明:∵??,??,?,∴???,∵?平分??,∴??????,∵??,∴????,∴???∴????,∴???,∵??,∴為?的中點(diǎn),∵?,∴?,由??,得??,∴為等邊三角形.22.解:(1)列表得:第二個(gè)數(shù)程第一個(gè)數(shù)點(diǎn)點(diǎn)點(diǎn)點(diǎn)點(diǎn)程點(diǎn)點(diǎn)點(diǎn)點(diǎn)點(diǎn)點(diǎn)程點(diǎn)點(diǎn)點(diǎn)點(diǎn)點(diǎn)點(diǎn)程點(diǎn)點(diǎn)點(diǎn)點(diǎn)點(diǎn)點(diǎn)程點(diǎn)程程點(diǎn)程點(diǎn)程點(diǎn)程點(diǎn)程點(diǎn)程程點(diǎn)點(diǎn)點(diǎn)點(diǎn)點(diǎn)點(diǎn)程點(diǎn)畫樹狀圖得:試卷第7頁(yè),總10頁(yè)
(2)∴一共有種可能的結(jié)果,且每種結(jié)果的出現(xiàn)可能性相同,點(diǎn)點(diǎn),點(diǎn),點(diǎn),點(diǎn)在反比例函數(shù)的圖象上,h點(diǎn)點(diǎn),點(diǎn),點(diǎn),點(diǎn)在反比例函數(shù)的圖象上.h∴點(diǎn)點(diǎn)在兩個(gè)反比例函數(shù)的圖象上的概率都為:,∴小芳的觀點(diǎn)正確.23.證明:連接?,∵=?,∴?=?,∵?平分,∴?=?,∴?=?,∴??,∵?,∴??,?為半徑,∴?為的切線;過作?,垂足為,∴?=?==?,∴四邊形?為矩形,∴?=,=?.∵?=,設(shè)=h,則=?=h,∵的直徑為?,∴=?=程,∴=程h,在中,由勾股定理得=.即程hh=程,化簡(jiǎn)得hh.=?,解得h=,h=.∵?=h大于?,故h=舍去,∴h=,從而=,=程=,∵?,由垂徑定理知,為?的中點(diǎn),∴?==.試卷第8頁(yè),總10頁(yè)
24.解:(1)∵??繞點(diǎn)順時(shí)針旋轉(zhuǎn)?,得到??,點(diǎn)的坐標(biāo)為?點(diǎn),∴點(diǎn)的坐標(biāo)為點(diǎn)?.∵拋物線過點(diǎn)、?、.設(shè)拋物線的函數(shù)表達(dá)式為?hh???,可得????,????解得.?故此拋物線的解析式為hh.(2)∵??,∴??,∵??,.∴??.可證??,?的周長(zhǎng)與?的周長(zhǎng)比????的周長(zhǎng)?,?程?的周長(zhǎng).程(3)連接,,設(shè)點(diǎn)的坐標(biāo)為:點(diǎn),∵點(diǎn)在拋物線上,∴,∴,將代入,原式,.∵?,試卷第9頁(yè),總10頁(yè)
程∵時(shí),,的面積最大,.程∴點(diǎn),的面積最大..試卷第10頁(yè),總10頁(yè)